What Is Ethernet? Definition, Types, and Uses
Ethernet is defined as a networking technology that includes the protocol, port, cable, and computer chip needed to plug a desktop or laptop into a local area network (LAN) for speedy data transmission via coaxial or fiber optic cables. This article explains the meaning of Ethernet and how it works, along with its key uses.
Ethernet is a networking technology that includes the protocol, port, cable, and computer chip needed to plug a desktop or laptop into a local area network (LAN) for speedy data transmission via coaxial or fiber optic cables.
Ethernet is a communication technology developed in the 1970s by Xerox that links computers in a network via a wired connection. It connects local area network (LAN) and wide area network (WAN) systems (WAN). With LAN and WAN, several devices, such as printers and laptops, may be connected across buildings, residences, and even small communities.
It provides a straightforward user interface that facilitates the connection of several devices, including switches, routers, and PCs. With a router and just a few Ethernet connections, it is possible to construct a local area network (LAN) that enables users to communicate between all connected devices. This is because laptops have Ethernet connectors, into which cables are inserted, and the other end is linked to routers.
Most Ethernet devices are compatible with Ethernet connections and devices that run at slower speeds. However, the connection speed will be determined by the weakest components.
Wireless networks have superseded Ethernet in many locations, yet the latter continues to be more prevalent for wired networking. Wired networks are more reliable and less susceptible to interference than wireless networks. This is the primary reason why so many businesses and organizations continue to adopt Ethernet.
Ethernet celebrated 25 years of existence in 1998; by that time, it had undergone several revisions as technology advanced. Ethernet is continually redesigned as its capabilities expand and evolve. Today, it is among the most widely used network technologies worldwide.
Ethernet was created in the early 1970s at the Xerox Palo Alto Research Center (PARC) by a group that included David Boggs and Robert Metcalfe. In 1983, the Institute of Electrical and Electronics Engineers (IEEE) ratified it as a standard.
Metcalfe developed the idea of Ethernet in a document he wrote for Xerox PARC in 1973, marking the beginning of Ethernet's development. Metcalfe built Ethernet based on the Aloha system, an earlier networking initiative that started in 1968 at the University of Hawaii. Metcalfe determined in 1973 that the technology had surpassed its initial appellation, Alto Aloha Network, and rebranded it as Ethernet.
Metcalfe and Boggs, together with their colleagues at Xerox, Charles Thacker, and Butler Lampson, would successfully trademark Ethernet technology four years later.
In 1980, Xerox collaborated with Digital Equipment Corporation and Intel to create the first 10 Mbps Ethernet standard. And in the meantime, the IEEE Local and Metropolitan Area Networks (LAN/MAN) Standards Committee set out to produce an equivalent open standard. The LAN/MAN committee established an Ethernet subcommittee with the designation 802.3. The IEEE adopted the first 802.3 standards for thick Ethernet in 1983 and was published formally in 1985.
See More: What Is Software-Defined Networking (SDN)? Definition, Architecture, and Applications
The Ethernet protocol employs a star topology or linear bus, which is the basis for the IEEE 802.3 standard. In the OSI network structure, this protocol works bot.h the physical layer and data link layer, the first two levels. Ethernet divides the data connection layer into two distinct layers: the logical link control tier and also the medium access control (MAC) tier.
The data connection layer in a network system is primarily concerned with transmitting data packets from one node to the other. Ethernet employs an access mechanism known as CSMA/CD (Carrier Sense Multiple Access/Collision Detection) to enable each computer to listen to the connection before delivering data across the network.
Ethernet also transmits data using two components: packets and frames. The frame contains the sent data payload as well as the following:
Each frame is encapsulated in packets that comprise many bytes of data to set up the connection and identify the frame's commencement point.
See More: What Is IPv6 (Internet Protocol Version 6)? Definition, Features, and Uses
An Ethernet connection encompasses the following:
See More: What Is MPLS (Multi-Protocol Label Switching)? Definition, Working, and Architecture
The key types of Ethernet connectivity are as follows:
Types of Ethernet Connections
A coaxial cable transmits electrical signals at high frequencies with minimal loss. Ethernet types 10Base2 and 10Base5 are now used. A copper conductor is surrounded by a dielectric insulator often constructed of PVC or Teflon. The dielectric insulator is encircled by a braided conductive metallic shield that minimizes electromagnetic interference of the metal as well as outside interference. Lastly, the metallic shield is covered with a PVC, or other fire-resistant plastic wrapping called a sheath. 10 Mbps is its highest transmission speed.
This Ethernet type can be further classified into networks that use one of the following cable types:
These connections employ optical fibers with glass cores wrapped by several sheets of cladding material, often PVC or Teflon. Since it sends data as light signals, there are no interference difficulties with fiber optics.
Fiber optics can transfer signals over far greater distances than twist pairs and coaxial cables. It employs 10BaseF, 100BaseFX, 100BaseBX, 100BaseSX, 1000BaseFx, 1000BaseSX, and 1000BaseBx variations of Ethernet. Consequently, it can transmit information at a rapid speed. This Ethernet type may also be subdivided into networks using the following:
Twisted pair is a copper wire cable consisting of two insulated copper wires wrapped around to prevent interference and crosstalk. It employs 10BASE-T, 100BASE-T, and a few additional Ethernet variants of more recent origin. It utilizes RJ-45 plugs. This Ethernet type may be among the following variations:
It is an Ethernet network capable of 100 Mbit/s data transmission. It may use twisted pairs or fiber optic cables. (The earlier 10 Mbit/s Ethernet is still deployed and utilized but lacks the bandwidth required for specific network video scenarios.)
Most network-connected devices, like laptops and network cameras, include a 100BASE-TX/10BASE-T Ethernet interface, often referred to as a 10/100 interface, that supports both 10 Mbit/s and Fast Ethernet. Cat-5 cable is the type of twisted pair cable which enables Fast Ethernet.
Gigabit Ethernet, which might alternatively be based on twisted pair or fiber optic cable, provides a data transfer rate of one gigabit per second (1 Gbit/s) and is gaining in popularity. It is anticipated to supersede Fast Ethernet as the de facto norm in the near future.
Cat-5e is the kind of twisted pair cable which enables Gigabit Ethernet, in which all four types of twisted wires are used to accomplish high data speeds. Cat-5e cables or higher are suggested for networked video systems. Most interfaces are interoperable with 10 and 100 Mbit/s Ethernet and therefore are frequently referred to as 10/100/1000 interfaces.
See More: What is an Intranet? Meaning, Features, and Best Practices
The newest iteration of Ethernet, 10 Gigabit Ethernet, offers a data throughput of 10 Gbit/s (10,000 Mbit/s) via an optic fiber or twisted pair connection. 10GBASE-LX4, 10GBASE-ER, or 10GBASE-SR built on an optical fiber connection could reach up to 10,000 meters in distance (6.2 miles). The twisted pair option requires a cable of exceptional quality (Cat-6a or Cat-7). Ethernet 10 Gbit/s is mainly utilized for backbone networks in high-end operations that demand significant data speeds.
This network configuration includes a hub or a switch. In addition, a standard network cable is employed as opposed to a twisted pair cable. A network switch's primary role is to transfer information/data from one device to another on the same network. Consequently, a network switch efficiently completes this operation since data is transported from one machine to another without harming other networking hardware within the same environment.
This form of Ethernet network has a star topology centered on a switch. A network switch employs a filtering and switching process comparable to gateways, where these methods have been around for an extended period.
This is the most prevalent type of wired LAN or WAN communication. A modem is directly attached to an Ethernet cable, and the cable's opposite end is linked to a machine (laptop or desktop). This cable needs to be at least Cat5 or above. Due to the direct connection, the speed is also much higher than wireless networks. In reality, this is an excellent Internet connection choice for individual users.
This is also feasible for several users, like in a small company network. One to fifteen devices may be connected to such a network across a range of up to 10 kilometers. While wired Ethernet is virtually extinct, it is still advantageous for smaller groups since it is considerably faster and more secure than wireless networks and can load and transmit large amounts of data, such as films and audio, and live stream them without interruption.
A wireless network relies on high-frequency radio signals and does not require cables to connect a receiving device, such as a laptop, to the network. In this method, often known as Wi-Fi, data is transferred using wireless signals instead of a cable. Consequently, it is more adaptable than wired networks, and the device will connect if it is within a certain range or on the router and modem's periphery.
If a modem and a router are present, one must connect the modem to the router via a category 5 (Cat5) or category 6 (Cat6) Ethernet connection. The item that is virtually linked receives a signal from the routers. This network is simple to set up, although there may be wifi signal concerns.
SOHO refers to a tiny office or home office. This is the simplest Ethernet LAN configuration. To construct this LAN, an Ethernet LAN Switch is utilized. Ethernet LAN Switches have several ports. An Ethernet cable links an endpoint or user device to one of these ports.
Today, Internet connectivity is an essential component of every network. To take advantage of this requirement, suppliers currently offer integrated networking connections that function as both routers and Ethernet switches. These devices typically contain four-eight LAN access points. Additionally, specific variants have wireless LAN entry (or access) points.
Ethernet is now a near-ubiquitous technology in today's hyper-connected digital world. This is because it:
Uses of Ethernet
See More: Wifi 5 vs. Wifi 6: Understanding the 10 Key Differences
Even in the era of high-speed wireless connectivity – particularly with the emergence of Wi-Fi 6 – Ethernet remains relevant. For many regions, it is still the best way to get Internet access, and most homes have an Ethernet connection linked to their router or hub. The market for Ethernet switches is constantly growing, despite being around for many years. For enterprises, Ethernet forms a crucial part of the networking infrastructure. By understanding how Ethernet works, you can optimize the power of wired internet connections
Did you find this article helpful in learning about Ethernet? Tell us on FacebookOpens a new window , TwitterOpens a new window , and LinkedInOpens a new window . We’d love to hear from you.
Technical Writer
See More: What Is Software-Defined Networking (SDN)? Definition, Architecture, and Applications See More: What Is IPv6 (Internet Protocol Version 6)? Definition, Features, and Uses The Ethernet protocol The Ethernet port Ethernet network adapter An Ethernet cable See More: What Is MPLS (Multi-Protocol Label Switching)? Definition, Working, and Architecture Types of Ethernet Connections Tri-axial RG-6 Hardline Single-mode fiber (SMF) Multi-mode fiber (MMF) Ethernets that use shielded twisted pair (STP) cables Ethernets that use unshielded twisted pair (UTP) cables See More: What is an Intranet? Meaning, Features, and Best Practices Uses of Ethernet Improves consumer internet experiences Offers high bandwidth connections Provides different options of speed, based on budget, region, and requirements Strikes a balance between cost and performance Amplifies the capabilities of your Wi-Fi network Enforces greater security Supports direct current (DC) power transmission See More: Wifi 5 vs. Wifi 6: Understanding the 10 Key Differences Did you find this article helpful in learning about Ethernet? Tell us on Facebook , Twitter , and LinkedIn . We’d love to hear from you. MORE ON NETWORKING Join Spiceworks